Ab-initio calculation of state-resolved cross sections and rate coefficients for electron-O$_2$ and -N$_2$ scattering

V. Laporta
Laboratoire Onde et Milieux Complexes
Université du Havre-CNRS, Le Havre (France)
Plan of the talk:

Ab initio state-resolved cross sections database

- Atmospheric modelling: electron-O$_2$ and electron-N$_2$
- Astrophysics: electron-He$_2^+$
- Fusion plasma: electron-BeH$^+$

Main collaborators:
R. Celiberto (Politecnico di Bari, Italy)
K. Chakrabarti (Scottish Church College, Kolkata, India)
M. Panesi (University of Illinois at Urbana Champaign, IL, USA)
I.F. Schneider (Université du Havre, France)
J. Tennyson (University College London, UK)
In order to describe the low-energy electron-\(\text{O}_2(\text{X}^3\Sigma_g^-)\) resonant scattering it needs to include four resonant states, \(^2\Pi_g, ^2\Pi_u, ^4\Sigma_u^-, ^2\Sigma_u^-\) of \(\text{O}_2^-\).

Potential energy curves and resonance widths obtained from MOLPRO and R-matrix within aug-cc-pvQZ basis-set and MR-CI model.

The \(\text{O}_2\) target was represented using the corresponding orbital configurations:
3 core orbitals \((2a_g, 1b_{1u})^6\) of frozen electrons and
9 valence orbitals up to \((3a_g, 2b_{3u}, 2b_{2u}, 3b_{1u}, 1b_{2g}, 1b_{3g})^{10}\).

For the scattering calculations:
\[(2a_g, 1b_{1u})^6 (5a_g, 2b_{3u}, 2b_{2u}, 4b_{1u}, 2b_{2g}, 2b_{3g})^{11}\]
and
\[(2a_g, 1b_{1u})^6 (5a_g, 2b_{3u}, 2b_{2u}, 4b_{1u}, 2b_{2g}, 2b_{3g})^{10} (6a_g, 3b_{3u}, 3b_{2u}, 1b_{1g}, 5b_{1u}, 3b_{2g}, 3b_{3g}, 1a_u)^1.\]
Table 1. Reduced mass (μ), dissociation energy (D_e) and equilibrium distance (R_e) for O$_2$ and O$_2^-$ potentials. Electron affinity (eA) of O$_2$ and the crossing point (R_c) between the O$_2$ and O$_2^-$ potential energy curves are also given. Literature values, where available, are given in parentheses.

<table>
<thead>
<tr>
<th></th>
<th>O$_2$ ($X^{3}\Sigma_g^-$)</th>
<th>O$_2^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ (a.u.)</td>
<td>14582.6</td>
<td></td>
</tr>
<tr>
<td>D_e (eV)</td>
<td>5.10 (5.12 [20])</td>
<td>4.02 0.83 1.54 0.73</td>
</tr>
<tr>
<td>R_e (a.u.)</td>
<td>2.92 (2.28 [20])</td>
<td>2.55 3.38 3.47 3.73</td>
</tr>
<tr>
<td>R_c (a.u.)</td>
<td>—</td>
<td>2.34 3.20 3.03 3.25</td>
</tr>
<tr>
<td>eA (eV)</td>
<td>1.45 (1.46 [21])</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Calculated vibrational levels of O$_2$($X^{3}\Sigma_g^-$) molecule for rotational level $j = 1$. Energies are given in eV.

<table>
<thead>
<tr>
<th>v</th>
<th>ϵ_p</th>
<th>v</th>
<th>ϵ_p</th>
<th>v</th>
<th>ϵ_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000</td>
<td>14</td>
<td>2.435</td>
<td>28</td>
<td>4.280</td>
</tr>
<tr>
<td>1</td>
<td>0.196</td>
<td>15</td>
<td>2.587</td>
<td>29</td>
<td>4.382</td>
</tr>
<tr>
<td>2</td>
<td>0.388</td>
<td>16</td>
<td>2.735</td>
<td>30</td>
<td>4.476</td>
</tr>
<tr>
<td>3</td>
<td>0.573</td>
<td>17</td>
<td>2.881</td>
<td>31</td>
<td>4.565</td>
</tr>
<tr>
<td>4</td>
<td>0.756</td>
<td>18</td>
<td>3.024</td>
<td>32</td>
<td>4.651</td>
</tr>
<tr>
<td>5</td>
<td>0.937</td>
<td>19</td>
<td>3.164</td>
<td>33</td>
<td>4.730</td>
</tr>
<tr>
<td>6</td>
<td>1.117</td>
<td>20</td>
<td>3.301</td>
<td>34</td>
<td>4.794</td>
</tr>
<tr>
<td>7</td>
<td>1.291</td>
<td>21</td>
<td>3.436</td>
<td>35</td>
<td>4.847</td>
</tr>
<tr>
<td>8</td>
<td>1.461</td>
<td>22</td>
<td>3.568</td>
<td>36</td>
<td>4.898</td>
</tr>
<tr>
<td>9</td>
<td>1.629</td>
<td>23</td>
<td>3.696</td>
<td>37</td>
<td>4.938</td>
</tr>
<tr>
<td>10</td>
<td>1.796</td>
<td>24</td>
<td>3.821</td>
<td>38</td>
<td>4.960</td>
</tr>
<tr>
<td>11</td>
<td>1.960</td>
<td>25</td>
<td>3.942</td>
<td>39</td>
<td>4.976</td>
</tr>
<tr>
<td>12</td>
<td>2.122</td>
<td>26</td>
<td>4.059</td>
<td>40</td>
<td>4.987</td>
</tr>
<tr>
<td>13</td>
<td>2.281</td>
<td>27</td>
<td>4.172</td>
<td>41</td>
<td>4.994</td>
</tr>
</tbody>
</table>
\[e^- + O_2(X^3\Sigma^-_g; \nu) \rightarrow O_2^- (^2\Pi_g, ^2\Pi_u, ^4\Sigma_u^-, ^2\Sigma_u^-) \rightarrow \begin{cases}
\quad e^- + O_2(X^3\Sigma^-_g; \nu') & \text{(VE)} \\
\quad O(^3\Pi) + O^-(^2\Pi) & \text{(DA)} \\
\quad e^- + O(^3\Pi) + O(^3\Pi) & \text{(DE)}
\end{cases} \]

At energy below 2 eV the VE cross sections are dominated by $^2\Pi_g$ symmetry; comparison with Allan’s results

Resonance at 10 eV dominated by $^4\Sigma_u^-$ symmetry
\[e^- + O_2(X^3\Sigma_g^-; \nu) \rightarrow O_2^-\left(2\Pi_g, 2\Pi_u, 4\Sigma_u^-, 2\Sigma_u^-\right) \rightarrow e^- + O_2(X^3\Sigma_g^-; \nu') \]

Set of calculated cross sections for \(j = 1 \)

and the corresponding rate coefficients
Dissociative-electron-attachment

\[e^- + O_2(X^3\Sigma_g^-; v) \rightarrow O_2(2\Pi_g, 2\Pi_u, 4\Sigma_u^-, 2\Sigma_u^-) \rightarrow O(3\Pi) + O^-(2P) \]

DeA cross section for \(v = 0 \) and \(j = 1 \)

Contributions from the four symmetries and comparison with some theoretical and experimental data present in literature
\[e^- + O_2(X^3\Sigma_g^-; v) \rightarrow O_2^-(2\Pi_g, 2\Pi_u, 4\Sigma_u^-, 2\Sigma_u^-) \rightarrow O(^3\Pi) + O^-(^2\Pi) \]

Set of calculated cross sections and the corresponding rate coefficients for some vibrational levels \(v \) and for \(j = 1 \).
Electron-impact dissociation:

\[e^- + O_2(X^3\Sigma_g^-; \nu) \rightarrow O_2\left(2^2\Pi_g, 2^2\Pi_u, 4^4\Sigma_u^-, 2^2\Sigma_u^-\right) \rightarrow e^- + 2 O(3\Pi) \]

Set of vibrational-resolved cross sections and the corresponding rate coefficients for \(j = 1 \)
Effect of target rotation

Number of vibrational levels as a function of the rotational quantum number j

<table>
<thead>
<tr>
<th>j</th>
<th>v_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0…41</td>
</tr>
<tr>
<td>50</td>
<td>0…33</td>
</tr>
<tr>
<td>100</td>
<td>0…23</td>
</tr>
<tr>
<td>150</td>
<td>0…9</td>
</tr>
<tr>
<td>170</td>
<td>0…2</td>
</tr>
</tbody>
</table>

Thermal averaged energy of the ro-vibrational level $\epsilon_{v,j}$:

$$\bar{\epsilon}_v(T_r) = \sum_j \epsilon_{v,j}(2j + 1) \frac{e^{-\epsilon_{v,j}/k_BT_r}}{Q_v(T_r)}$$

T_r is the rotational temperature.
Thermal averaged vibrational-excitation cross section, T_r is the rotational temperature:

$$\bar{\sigma}_{v,v'}(\epsilon, T_r) = \sum_j \sigma_{v,v,j}(\epsilon)(2j + 1) \frac{e^{-\epsilon_v/j/k_BT_r}}{Q_v(T_r)}$$

j-resolved cross section for $v = 0 \rightarrow v' = 1$

Thermal averaged rate coefficient by assuming the rotational temperature in equilibrium with electron temperature

Thermal averaged rate coefficient
Rotational j-resolved rate coefficients (solid lines) as a function of the electron temperature and Thermal averaged rate coefficient (dashed line) by assuming the rotational temperature in equilibrium with electron temperature

dissociative-electron-attachment

dissociative-excitation
Application: Electron-vibration relaxation in oxygen plasmas

\[e + O_2(X^3\Sigma^{-}_g; \nu, j) \rightleftharpoons e + O_2(X^3\Sigma^{-}_g; w, j), \]

\[\text{(VE)} \]

- State-to-State vibrational kinetics
- Vibrational relaxation time is comparable to chemical relaxation: vibrational non-equilibrium

\[\frac{dn_{\nu}}{dt} = n_e \sum_{w \in \nu} [k_{w,\nu} n_w - k_{\nu,w} n_{\nu}], \quad \nu \in \mathcal{V}, \]

V. Laporta, K.L. Heritier and M. Panesi, Chemical Physics 472 (2016) 44–49
• Time evolution of non-equilibrium vibrational distribution function:

- Equilibrium distribution
- Non-equilibrium distribution

• Vibrational relaxation time:

\[
\frac{d E_{vib}}{dt} = \frac{E^*_{vib} - E_{vib}}{\tau_e},
\]

\[\tau_e = P_e \tau \]
electron-N\textsubscript{2} resonant scattering

The resonance at 2.3 eV in electron-N\textsubscript{2} scattering is described in term of the resonant state N\textsubscript{2}- (X 2\Pi\textsubscript{g})

The quantum chemistry codes MOLPRO and R-Matrix have been used to calculate potential energy curves, resonance width:

\textbf{cc-pvQZ basis set} \hspace{1cm} \textbf{MR-CI model}

\textbf{CAS (1}\sigma\textsubscript{g}, 1}\sigma\textsubscript{u})^4(2}\sigma\textsubscript{g}, 2}\sigma\textsubscript{u}, 1}\pi\textsubscript{u}, 3}\sigma\textsubscript{g}, 1}\pi\textsubscript{g}, 3}\sigma\textsubscript{u})^{10} 128 configurations

V. Laporta \textit{et al.}, Plasma Sources Sci. Technol. 23, 065002 (2014)
V. Laporta \textit{et al.}, Plasma Sources Sci. Technol. 21, 055018 (2012)
Vibrational-excitation process:

\[e^- + N_2(X^1\Sigma^+_g; \nu, J) \rightarrow N_2^- (X^2\Pi_g) \rightarrow e^- + N_2(X^1\Sigma^+_g; \nu', J) \]
Elastic transitions ($v \rightarrow v$)

Inelastic transitions ($20 \rightarrow v$)

VE cross sections parameterized on N_2 rotational quantum number J
Electron-impact dissociation:

\[e^- + N_2(X \ ^1\Sigma^+; \nu, J) \rightarrow N_2(X \ ^2\Pi_g) \rightarrow e^- + 2 N(4S) \]
Electron-vibration relaxation in nitrogen plasmas

\[e^- + N_2(X^1\Sigma^+_g; \nu, J) \rightarrow N_2(X^2\Pi_g) \rightarrow e^- + N_2(X^1\Sigma^+_g; \nu', J) \]

- Time evolution of non-equilibrium vibrational distribution function:
\[\frac{dE_{\text{vib}}}{dt} = \frac{E_{\text{vib}}^* - E_{\text{vib}}}{\tau_e}, \]

FIG. 8. Vibrational relaxation time as a function of electron temperature for different values of the initial vibrational temperature \(T_v \). The values are obtained by solving the full set of kinetics equations.
electron-He$_2^+$ dissociation cross sections

\[e + \text{He}_2^+ (X^2\Sigma_u^+, v = 0 - 23) \rightarrow e + \text{He}_2^+ (A^2\Sigma_g^+) \rightarrow e + \text{He} + \text{He}^+, \]
Figure 4. AN cross sections for processes starting from different \(\text{He}_2^+ \) vibrational levels \(\nu \).
electron-BeH\(^+\) Dissociative Recombination cross sections

V Laporta, K Chakrabarti, R Celiberto, RK Janev, JZs Mezei, S Niyonzima, J Tennyson and IF Schneider, PPCF 59, 045008 (2017)
\[e^- + \text{BeH}^+(X \,^1\Sigma^+; \nu^+, j^+) \rightarrow \text{BeH}^{**} \rightarrow e^- + \text{BeH}^+(X \,^1\Sigma^+; w^+, j^+), \] (VE)

\[e^- + \text{BeH}^+(X \,^1\Sigma^+; \nu^+, j^+) \rightarrow \text{BeH}^{**} \rightarrow \text{Be}^*(n) + \text{H}^\text{(2S)}, \quad n = 1, \ldots, 12, \] (DR)

\[e^- + \text{BeH}^+(X \,^1\Sigma^+; \nu^+, j^+) \rightarrow \text{BeH}^{**} \rightarrow e^- + \text{Be}^+\text{(2S)} + \text{H}^\text{(2S)}, \] (DE)
Work in progress...

- We are planning with our collaborations to calculate *ab initio* cross sections for the main elementary processes for electron-molecule scattering (dissociative attachment, dissociative excitation, dissociative recombination and vibrational excitation);

- Work is in progress on electron-CO$_2$ scattering, electron-N$_2^+$, improvement of electron-NO….

Thank you for your attention