Nonequilibrium Processes and Plasma Radiation in Hyperbolic Atmospheric Entry Flows

M. Lino da Silva, V. Guerra, J. Loureiro

(1) Centro de Física de Plasmas, Instituto Superior Técnico, Lisboa, Portugal

3 August 2005
Plan

1. Physical-Chemical-Radiative Problems of Hyperbolic Atmospheric Entries

2. Example for Radiative Calculations: Mars Atmospheric Entries

4. Concluding Remarks and Perspectives
Plan

1. Physical-Chemical-Radiative Problems of Hyperbolic Atmospheric Entries

2. Example for Radiative Calculations: Mars Atmospheric Entries

4. Concluding Remarks and Perspectives
Plan

1. Physical-Chemical-Radiative Problems of Hyperbolic Atmospheric Entries
2. Example for Radiative Calculations: Mars Atmospheric Entries
4. Concluding Remarks and Perspectives
Plan

1. Physical-Chemical-Radiative Problems of Hyperbolic Atmospheric Entries
2. Example for Radiative Calculations: Mars Atmospheric Entries
4. Concluding Remarks and Perspectives
Plan

1. Physical-Chemical-Radiative Problems of Hyperbolic Atmospheric Entries
2. Example for Radiative Calculations: Mars Atmospheric Entries
4. Concluding Remarks and Perspectives
Hyperbolic entry trajectories at $v > 10$ km/s (From Mars $v = 11$ km/s).
Space-Shuttle entries from orbit (parabolic trajectory) at $v < 7$ km/s.

Plasma radiation important for overall heat fluxes calculation at $v > 5$ km/s.

Extreme nonequilibrium conditions behind the strong shock-wave, $T_{tr} \gg T_{vib}$, $T_{tr} > 10,000$ K
Spacecraft Atmospheric Entries from Outer Space

- Hyperbolic entry trajectories at $v > 10$ km/s (From Mars $v = 11$ km/s).
- Space-Shuttle entries from orbit (parabolic trajectory) at $v < 7$ km/s.
- Plasma radiation important for overall heat fluxes calculation at $v > 5$ km/s.
- Extreme nonequilibrium conditions behind the strong shock-wave, $T_{tr} \gg T_{vib}$, $T_{tr} > 10,000$ K.
Hyperbolic Atmospheric Entries

Mars Atmospheric Entries Radiation

Nonequilibrium Processes in Shock-Heated Flows

Conclusions & Perspectives

Spacecraft Atmospheric Entries from Outer Space

- Hyperbolic entry trajectories at $v > 10$ km/s (From Mars $v = 11$ km/s).
 Space-Shuttle entries from orbit (parabolic trajectory) at $v < 7$ km/s.
- Plasma radiation important for overall heat fluxes calculation at $v > 5$ km/s.
- Extreme nonequilibrium conditions behind the strong shock-wave, $T_{tr} \gg T_{vib}$, $T_{tr} > 10,000$ K.
Estimation of the Spacecraft Aerodynamic and Thermal (Convective + Radiative) Loads

- Gas radiative properties determined by the wavelength-dependent emission and absorption coefficients:
 \[\varepsilon_{ul} = N_u A_{ul} \Delta E_{ul} \]
 \[\alpha_{lu} = N_l B_{lu} \Delta E_{ul} \]

Besides the transition radiative properties \((A_{ul}, B_{lu})\), the state populations need to be known \((N_u, N_l)\), usually in a state-to-state approach.

- Dissociation (endothermic) and recombination (exothermic) chemical reactions affect convective heating loads and also need to be treated in the state-to-state approach.
Gas radiative properties determined by the wavelength-dependent emission and absorption coefficients:

\[\varepsilon_{ul} = N_u A_{ul} \Delta E_{ul} \]
\[\alpha_{lu} = N_l B_{lu} \Delta E_{ul} \]

Besides the transition radiative properties \((A_{ul}, B_{lu})\), the state populations need to be known \((N_u, N_l)\), usually in a state-to-state approach.

Dissociation (endothermic) and recombination (exothermic) chemical reactions affect convective heating loads and also need to be treated in the state-to-state approach.
Estimation of the Spacecraft Aerodynamic and Thermal (Convective + Radiative) Loads

- Gas radiative properties determined by the wavelength-dependent emission and absorption coefficients:
 \[\varepsilon_{ul} = N_u A_{ul} \Delta E_{ul} \]
 \[\alpha_{lu} = N_l B_{lu} \Delta E_{ul} \]

Besides the transition radiative properties \((A_{ul}, B_{lu})\), the state populations need to be known \((N_u, N_l)\), usually in a state-to-state approach.

- Dissociation (endothermic) and recombination (exothermic) chemical reactions affect convective heating loads and also need to be treated in the state-to-state approach.
Gas radiative properties determined by the wavelength-dependent emission and absorption coefficients:

- \(\varepsilon_{ul} = N_u A_{ul} \Delta E_{ul} \)
- \(\alpha_{lu} = N_l B_{lu} \Delta E_{ul} \)

Besides the transition radiative properties \((A_{ul}, B_{lu})\), the state populations need to be known \((N_u, N_l)\), usually in a state-to-state approach.

Dissociation (endothermic) and recombination (exothermic) chemical reactions affect convective heating loads and also need to be treated in the state-to-state approach.
Gas radiative properties determined by the wavelength-dependent emission and absorption coefficients:

- $\varepsilon_{ul} = N_u A_{ul} \Delta E_{ul}$
- $\alpha_{lu} = N_l B_{lu} \Delta E_{ul}$

Besides the transition radiative properties (A_{ul}, B_{lu}), the state populations need to be known (N_u, N_l), usually in a state-to-state approach.

Dissociation (endothermic) and recombination (exothermic) chemical reactions affect convective heating loads and also need to be treated in the state-to-state approach.
Plan

1. Physical-Chemical-Radiative Problems of Hyperbolic Atmospheric Entries
2. Example for Radiative Calculations: Mars Atmospheric Entries
4. Concluding Remarks and Perspectives
Two different issues: calculation of transition probabilities (quantum mechanics models) and calculation of quantum states populations (collisional-radiative models)

Calculation of transition probabilities can now be routinely carried for most chemical species

No complete collisional-radiative model exists for the simulation of atmospheric entry flows. Most simulations assume Boltzmann equilibrium conditions

Additional issue (not discussed here): radiation transport → different numerical models available
Simulation of Atmospheric Entry Radiation

- Two different issues: calculation of transition probabilities (quantum mechanics models) and calculation of quantum states populations (collisional-radiative models)
- Calculation of transition probabilities can now be routinely carried for most chemical species
- No complete collisional-radiative model exists for the simulation of atmospheric entry flows. Most simulations assume Boltzmann equilibrium conditions

Additional issue (not discussed here): radiation transport → different numerical models available
Simulation of Atmospheric Entry Radiation

Two different issues: calculation of transition probabilities (quantum mechanics models) and calculation of quantum states populations (collisional-radiative models)

Calculation of transition probabilities can now be routinely carried for most chemical species

No complete collisional-radiative model exists for the simulation of atmospheric entry flows. Most simulations assume Boltzmann equilibrium conditions

Additional issue (not discussed here): radiation transport → different numerical models available
Simulation of Atmospheric Entry Radiation

- Two different issues: calculation of transition probabilities (quantum mechanics models) and calculation of quantum states populations (collisional-radiative models)
- Calculation of transition probabilities can now be routinely carried for most chemical species
- No complete collisional-radiative model exists for the simulation of atmospheric entry flows. Most simulations assume Boltzmann equilibrium conditions

Additional issue (not discussed here): radiation transport → different numerical models available
Atmospheric Entry Radiation Research Activities at IST

- Line-by-Line numerical code SPARTAN: Simulation of PlasmA Radiation in Thermodynamic Nonequilibrium
- 63 atomic and molecular bound-bond, bound-free (Photodissociation, Photoionization, Photodetachment), and free-free (Bremsstrahlung) transitions from C, N, and O containing species (Earth & Mars)
- Online Gas & Plasma Radiation Database (GPRD) at http://cfp.ist.utl.pt/radiation for providing the scientific community with a database for molecular radiation
Atmospheric Entry Radiation Research Activities at IST

- Line-by-Line numerical code SPARTAN: Simulation of PlasmA Radiation in Thermodynamic Nonequilibrium
- 63 atomic and molecular bound-bond, bound-free (Photodissociation, Photoionization, Photodetachment), and free-free (Bremsstrahlung) transitions from C, N, and O containing species (Earth & Mars)
- Online Gas & Plasma Radiation Database (GPRD) at http://cfp.ist.utl.pt/radiation for providing the scientific community with a database for molecular radiation
Atmospheric Entry Radiation Research Activities at IST

- 63 atomic and molecular bound-bond, bound-free (Photodissociation, Photoionization, Photodetachment), and free-free (Bremsstrahlung) transitions from C, N, and O containing species (Earth & Mars)
- Online Gas & Plasma Radiation Database (GPRD) at http://cfp.ist.utl.pt/radiation for providing the scientific community with a database for molecular radiation
Radiative Transition Probabilities Calculation

- Systematic calculation of the transition probabilities A_{ul} by an "ab-initio" method
- Reconstruction of the molecular potentials using the RKR method and resolution of the Schrödinger equation

Example for the CN Violet System
Spectral Simulation of the Equilibrium Radiative Properties of a Martian-Type Plasma

- High resolution calculation of emission and absorption coefficients for a 100Å–100μm spectral range at 1000, 5000, and 10000 K using the full spectroscopic database (49 transitions)
- 30 min calculation time on a laptop for a spectrum of $\sim 10^5 – 10^6$ points
Spectral Simulation of the Equilibrium Radiative Properties of a Martian-Type Plasma

- High resolution calculation of emission and absorption coefficients for a 100Å–100µm spectral range at 1000, 5000, and 10000 K using the full spectroscopic database (49 transitions)

- 30 min calculation time on a laptop for a spectrum of \(\sim 10^5 - 10^6 \) points
Radiative properties at 1000 K

Emission coefficient

Absorption coefficient
Radiative properties at 5000 K

Emission coefficient

Absorption coefficient
Radiative properties at 10000 K

Emission coefficient

Absorption coefficient
Equilibrium Radiation of a Martian-type Gas at 4300 Pa for the Temperature Range 200-10000 K

- Selected pressure of 4300 Pa which corresponds to the post-shock pressure in a aerocapture manoeuver in Mars atmosphere
- Calculation of the gas optically thin radiative power
- Calculation of the individual contribution of each system to the overall radiative power
Equilibrium Radiation of a Martian-type Gas at 4300 Pa for the Temperature Range 200-10000 K

- Selected pressure of 4300 Pa which corresponds to the post-shock pressure in a aerocapture manoeuver in Mars atmosphere
- Calculation of the gas optically thin radiative power
- Calculation of the individual contribution of each system to the overall radiative power
Equilibrium Radiation of a Martian-type Gas at 4300 Pa for the Temperature Range 200-10000 K

- Selected pressure of 4300 Pa which corresponds to the post-shock pressure in a aerocapture manoeuver in Mars atmosphere
- Calculation of the gas optically thin radiative power
- Calculation of the individual contribution of each system to the overall radiative power
Quantitative Radiative Properties of a Martian-type Gas at 4300 Pa for the Temperature Range 200-10000 K

Optically thin radiative power of a Martian-type gas at 4300 Pa, in the temperature range 200-10000 K

Contribution from each atomic and molecular system.
Selection of an Appropriate Spectral Database

- For equilibrium conditions, few atomic and molecular systems contribute for overall radiative flux
- Not to be extrapolated to nonequilibrium conditions! (even for Boltzmann equilibrium of the flow, e.g. C_2 Swan Bands). Also for non-optically thin gas must account for absorbing transitions, e.g. O_2 Schumann–Runge
- Must have the most reduced set without losing precision (lower number of calculated lines)
- More difficult task in strong nonequilibrium conditions! (e.g. behind shock-waves)
Selection of an Appropriate Spectral Database

- For equilibrium conditions, few atomic and molecular systems contribute for overall radiative flux.
- Not to be extrapolated to nonequilibrium conditions! (even for Boltzmann equilibrium of the flow, e.g. C_2 Swan Bands). Also for non-optically thin gas must account for absorbing transitions, e.g. O_2 Schumann–Runge.
- Must have the most reduced set without losing precision (lower number of calculated lines).
- More difficult task in strong nonequilibrium conditions! (e.g. behind shock-waves).
Selection of an Appropriate Spectral Database

- For equilibrium conditions, few atomic and molecular systems contribute for overall radiative flux.
- Not to be extrapolated to nonequilibrium conditions! (even for Boltzmann equilibrium of the flow, e.g. C_2 Swan Bands).
- Also for non-optically thin gas must account for absorbing transitions, e.g. O_2 Schumann–Runge.
- Must have the most reduced set without losing precision (lower number of calculated lines).
- More difficult task in strong nonequilibrium conditions! (e.g. behind shock-waves).
Selection of an Appropriate Spectral Database

- For equilibrium conditions, few atomic and molecular systems contribute for overall radiative flux.
- Not to be extrapolated to nonequilibrium conditions! (even for Boltzmann equilibrium of the flow, e.g. C\textsubscript{2} Swan Bands).
- Also for non-optically thin gas must account for absorbing transitions, e.g. O\textsubscript{2} Schumann–Runge.
- Must have the most reduced set without losing precision (lower number of calculated lines).
- More difficult task in strong nonequilibrium conditions! (e.g. behind shock-waves).
Plan

1. Physical-Chemical-Radiative Problems of Hyperbolic Atmospheric Entries
2. Example for Radiative Calculations: Mars Atmospheric Entries
4. Concluding Remarks and Perspectives
Challenges Associated to the Development of a Nonequilibrium Entry Flow Model

- Definition of a self-consistent rate equations set valid in atmospheric entry conditions
- Also computational issues! Must retain a reduced but accurate set of rate equations
Challenges Associated to the Development of a Nonequilibrium Entry Flow Model

- Definition of a self-consistent rate equations set valid in atmospheric entry conditions
- Also computational issues! Must retain a reduced but accurate set of rate equations
Different processes behind the shock-wave lead to the formation of an entry plasma.

- Dissociation, ionization processes with $E_{tr-rot} \gg E_{vib}, E_{el}$
- V–E Excitation of molecular electronic levels will contribute for gas radiation and Penning ionization ($N_2(A) + N_2(a') \leftrightarrow N_2(X) + N_2^+(X)$)
- Maxwellian EEDF may be assumed as the electrons are thermalized
Different processes behind the shock-wave lead to the formation of an entry plasma.

Dissociation, ionization processes with $E_{tr-rot} \gg E_{vib}, E_{el}$

V–E Excitation of molecular electronic levels will contribute for gas radiation and Penning ionization $(N_2(A)+N_2(a') \rightleftharpoons N_2(X)+N_2^+(X))$

Maxwellian EEDF may be assumed as the electrons are thermalized.

<table>
<thead>
<tr>
<th>Shock</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissociation</td>
<td>Ionization (Penning?)</td>
<td>Plasma State</td>
<td></td>
</tr>
<tr>
<td>V-T</td>
<td>V-E</td>
<td>Electron-Impact Reactions</td>
<td></td>
</tr>
<tr>
<td>V-V-T</td>
<td>t</td>
<td>e-V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>e-E</td>
<td></td>
</tr>
</tbody>
</table>
Different processes behind the shock-wave lead to the formation of an entry plasma

- Dissociation, ionization processes with $E_{\text{tr-rot}} \gg E_{\text{vib}}, E_{\text{el}}$

- V–E Excitation of molecular electronic levels will contribute for gas radiation and Penning ionization

 \[
 (N_2(A) + N_2(a') \leftrightarrow N_2(X) + N_2^+(X))
 \]

- Maxwellian EEDF may be assumed as the electrons are thermalized
Different processes behind the shock-wave lead to the formation of an entry plasma.

Dissociation, ionization processes with $E_{tr-rot} \gg E_{vib}, E_{el}$

V-E Excitation of molecular electronic levels will contribute for gas radiation and Penning ionization $(N_2(A) + N_2(a') \leftrightarrow N_2(X) + N_2^+(X))$

Maxwellian EEDF may be assumed as the electrons are thermalized.
Reproduction of Inflight Flow Conditions in Ground-Test Facilities

- Shock-tube facilities typical of forebody flows, closer to entry flow conditions \((E_{tr} > E_{el}) \) but short test times \((<1 \text{ ms}) \) and typically with \(v < 10 \text{ km/s} \)

- Plasma facilities typical of afterbody flows and farther from entry flow conditions \((E_{tr} < E_{el}) \) but virtually unlimited test times

Simulation of entry-like flows in different ground-test facilities
Reproduction of Inflight Flow Conditions in Ground-Test Facilities

- Shock-tube facilities typical of forebody flows, closer to entry flow conditions \((E_{tr} > E_{el})\) but short test times \((<1 \text{ ms})\) and typically with \(v<10 \text{ km/s}\)

- Plasma facilities typical of afterbody flows and farther from entry flow conditions \((E_{tr} < E_{el})\) but virtually unlimited test times

Simulation of entry-like flows in different ground-test facilities

Expansion Flow
- Arc-Jet Facilities
- ICP Facilities
- Microwave Facilities

\(T<Te\)

Compression Flow
- Shock-Tubes

\(T>Te\)
Simulation of Dissociation Processes Behind Hyperbolic Shock-Waves

- Translational Temperatures up to 100,000 K
- V–T & V–V–T dissociation processes simulated by the FHO model
- Model more accurate than FOPT models, and compares well with more complex methods (QCT – Billing, Lagana)
- Model developed in the 60’s (Rapp, Kerner, Treanor, Zelechow) and extended by Adamovich in the 90’s
Simulation of Dissociation Processes Behind Hyperbolic Shock-Waves

- Translational Temperatures up to 100,000 K
- V–T & V–V–T dissociation processes simulated by the FHO model
- Model more accurate than FOPT models, and compares well with more complex methods (QCT – Billing, Lagana)
- Model developed in the 60’s (Rapp, Kerner, Treanor, Zelechow) and extended by Adamovich in the 90’s
Simulation of Dissociation Processes Behind Hyperbolic Shock-Waves

- Translational Temperatures up to 100,000 K
- V–T & V–V–T dissociation processes simulated by the FHO model
- Model more accurate than FOPT models, and compares well with more complex methods (QCT – Billing, Lagana)
- Model developed in the 60’s (Rapp, Kerner, Treanor, Zelechow) and extended by Adamovich in the 90’s
Simulation of Dissociation Processes Behind Hyperbolic Shock-Waves

- Translational Temperatures up to 100,000 K
- V–T & V–V–T dissociation processes simulated by the FHO model
- Model more accurate than FOPT models, and compares well with more complex methods (QCT – Billing, Lagana)
- Model developed in the 60’s (Rapp, Kerner, Treanor, Zelechow) and extended by Adamovich in the 90’s
The Forced Harmonic Oscillator Model

- **V–T probabilities for collinear atom-diatom non-reactive collisions** (Kerner:1958) & (Treanor:1965)

\[P(i \rightarrow f, \varepsilon) = i!f!\varepsilon^{i+f} \exp(-\varepsilon) \left| \sum_{r=0}^{n} \frac{(-1)^r}{r!(i-r)!(f-r)!\varepsilon^r} \right|^2, \]

\[n = \text{min}(i, f). \]

- **V–V–T probabilities for collinear diatom-diatom collisions** (Zelechow:1968)

\[P(i_1, i_2 \rightarrow f_1, f_2, \varepsilon, \rho) = \left| \sum_{g=1}^{n} (-1)^{(i_12-g+1)} \times C_{g,i_2+1}^i C_{g,f_2+1}^f \varepsilon^{1/2(i_12+f_12-2g+2)} \exp(-\varepsilon/2) \right|^2 \]

\[\times \sqrt{(i_12-g+1)!(f_12-g+1)!} \exp[-i(f_12-g+1)\rho] \times \sum_{l=0}^{n-g} \frac{(-1)^l}{(i_12-g+1-l)!(f_12-g+1-l)!!\varepsilon^l} \]

\[i_{12} = i_1 + i_2, \quad f_{12} = f_1 + f_2, \]

\[n = \text{min}(i_1 + i_2 + 1, f_1 + f_2 + 1). \]
Assumptions for Shock-Heated Flows

- V–V–T reaction rates for the 59 levels of: \(\text{N}_2: 59^4 \sim 10^7 \)

 \[\Rightarrow P(i_1, \text{all} \rightarrow f_1, \text{all}, \varepsilon, \rho) = P(i_1 \rightarrow f_1, \varepsilon). \quad (\text{Adamovich:1995}) \]

- Dissociation occurs for a transition to a vibrational level \(\nu > 59 \) (quasibound level)

 \[P(i \rightarrow, \varepsilon) = P(i \rightarrow \nu_{\text{qbound}}, \varepsilon) \cdot P_{\text{decay}}, \]
 \[P_{\text{decay}} \sim 1 \]
Assumptions for Shock-Heated Flows

- V–V–T reaction rates for the 59 levels of: N_2: $59^4 \sim 10^7$

$$\Rightarrow P(i_1, \text{all} \to f_1, \text{all}, \varepsilon, \rho) = P(i_1 \to f_1, \varepsilon). \quad \text{(Adamovich:1995)}$$

- Dissociation occurs for a transition to a vibrational level $v > 59$ (quasibound level)

$$P(i \to, \varepsilon) = P(i \to v_{\text{qbound}}, \varepsilon) \cdot P_{\text{decay}},$$
$$P_{\text{decay}} \sim 1$$
Inaccurate determinations of levels energy separations near and above the dissociation limit will provide inaccurate transition probabilities.

Polynomial expansions prevent the calculation of quasibound vibrational levels $v_{qbound} > 81$.

Vibrational levels energies for N_2.
Inaccurate determinations of levels energy separations near and above the dissociation limit will provide inaccurate transition probabilities.

Polynomial expansions prevent the calculation of quasibound vibrational levels $v_{qbound} > 81$.

Vibrational levels energies for N_2.
Possible Simplifications

- Asymptotical expressions by Adamovich simplify calculations and allow for rotation effects

\[P(i \rightarrow f, \varepsilon) = J_s^2 \left(2\sqrt{n_s \varepsilon} \right) \]

- No approximations used here. Variable precision arithmetics in MATLAB (64 digits numbers) used in calculations

\[J_s^2 \left(2\sqrt{n_s \varepsilon} \right) \approx \frac{(n_s)^s}{(s!)^2} \varepsilon^s \exp \left(\frac{-2n_s \varepsilon}{s+1} \right) \]
Possible Simplifications

Asymptotical expressions by Adamovich simplify calculations and allow for rotation effects

\[P(5 \rightarrow 4) \]

\[P(i \rightarrow f, \varepsilon) = J_s^2 (2\sqrt{n_s \varepsilon}) \]

No approximations used here. Variable precision arithmetics in MATLAB (64 digits numbers) used in calculations

\[J_s^2 (2\sqrt{n_s \varepsilon}) \approx \frac{(n_s)^s}{(s!)^2} \varepsilon^s \exp \left(-\frac{2n_s \varepsilon}{s+1} \right) \]
Validation of the FHO model

- Comparison with experimental data and QCT calculations by Billing show very good agreement in general.
- Failure of the FHO model for near-resonant transitions at lower temperatures (not important for shock-heated flows).
- Near 100,000K reaction rates achieve a plateau.

Single-quantum V–V rates for N_2–N_2 (0, 1→1, 0) and (0, 1→20, 19) transitions and O_2–N_2 (0, 1→1, 0) transitions. — and ——, FHO model. ×, calculations of Billing:1979 for N_2–N_2. ⚫, interpolation of experimental data for N_2–O_2 (1, 0→0, 1), Taylor:1969.
Validation of the FHO model

- Comparison with experimental data and QCT calculations by Billing show very good agreement in general.
- Failure of the FHO model for near-resonant transitions at lower temperatures (not important for shock-heated flows).
- Near 100,000K reaction rates achieve a plateau.

Single-quantum V–V rates for \(\text{N}_2–\text{N}_2 \) (0, 1\(\rightarrow \)1, 0) and (0, 1\(\rightarrow \)20, 19) transitions and \(\text{O}_2–\text{N}_2 \) (0, 1\(\rightarrow \)1, 0) transitions. — and ——, FHO model. \(\times \), calculations of Billing:1979 for \(\text{N}_2–\text{N}_2 \). ◊, interpolation of experimental data for \(\text{N}_2–\text{O}_2 \) (1, 0\(\rightarrow \)0, 1), Taylor:1969.
Validation of the FHO model

- Comparison with experimental data and QCT calculations by Billing show very good agreement in general.
- Failure of the FHO model for near-resonant transitions at lower temperatures (not important for shock-heated flows).
- Near 100,000K reaction rates achieve a plateau.

Single-quantum V–V rates for $\text{N}_2–\text{N}_2$ (0, 1→1, 0) and (0, 1→20, 19) transitions and $\text{O}_2–\text{N}_2$ (0, 1→1, 0) transitions. — and ——, FHO model. ×, calculations of Billing:1979 for $\text{N}_2–\text{N}_2$. ◊, interpolation of experimental data for $\text{N}_2–\text{O}_2$ (1, 0→0, 1), Taylor:1969.
Simulation of Simplified Shock Geometries for Nitrogen flows

- V–T reaction rate database calculated up to $T_{tr} = 100,000\,\text{K}$ for 100 levels of N_2
- Simulation of a Shock at an altitude of 76 km and fixed translational temperatures of 1,000, 10,000 and 100,000 K.
Simulation of Simplified Shock Geometries for Nitrogen flows

- V–T reaction rate database calculated up to $T_{tr} = 100,000\,\text{K}$ for 100 levels of N_2
- Simulation of a Shock at an altitude of 76 km and fixed translational temperatures of 1,000, 10,000 and 100,000 K.
Shock Simulation at 1000 K

- Reaction Rates Database at 1000 K
- Time Evolution of the VDF
Shock Simulation at 10000 K

Reaction Rates Database at 10000 K

Time Evolution of the VDF
Shock Simulation at 100000 K

Reaction Rates Database at 100000 K

Time Evolution of the VDF
Evolution of the Molecular Dissociation at Different Shock Temperatures

- Dissociation times range from more than 1 s for \(T \leq 5,000\text{K} \) to 1 ns for \(T = 100,000\text{K} \)
- For lower temperatures, “ladder-climbing” phenomena enhance dissociation after a certain incubation time
- At higher temperatures, \((T \geq 50,000\text{K}) \) dissociation proceeds equiprobably from all the vibrational levels
Dissociation times range from more than 1 s for \(T \leq 5,000\text{K} \) to 1 ns for \(T = 100,000\text{K} \).

For lower temperatures, “ladder-climbing” phenomena enhance dissociation after a certain incubation time.

At higher temperatures, \((T \geq 50,000\text{K}) \) dissociation proceeds equiprobably from all the vibrational levels.
Evolution of the Molecular Dissociation at Different Shock Temperatures

- Dissociation times range from more than 1 s for \(T \leq 5,000\text{K} \) to 1 ns for \(T = 100,000\text{K} \).
- For lower temperatures, “ladder-climbing” phenomena enhance dissociation after a certain incubation time.
- At higher temperatures, \((T \geq 50,000\text{K})\) dissociation proceeds equiprobably from all the vibrational levels.

Time evolution of N\(_2\) dissociation at different shock temperatures.
Plan

1. Physical-Chemical-Radiative Problems of Hyperbolic Atmospheric Entries
2. Example for Radiative Calculations: Mars Atmospheric Entries
4. Concluding Remarks and Perspectives
Conclusions

- Development of radiation databases is a straightforward task, but needs extensive validations.
- Developed state-to-state models need to be valid for the most extreme hyperbolic shock-waves. Importance of multiquantum transitions.
- Computation time issues remain determinant as they prevent full-use of line-by-line calculations and state-to-state models. The errors induced by the used approximations (Boltzmann equilibrium, band models) remain unknown.
Conclusions

- Development of radiation databases is a straightforward task, but needs extensive validations.
- Developed state-to-state models need to be valid for the most extreme hyperbolic shock-waves. Importance of multiquantum transitions.
- Computation time issues remain determinant as they prevent full-use of line-by-line calculations and state-to-state models. The errors induced by the used approximations (Boltzmann equilibrium, band models) remain unknown.
Conclusions

- Development of radiation databases is a straightforward task, but needs extensive validations.
- Developed state-to-state models need to be valid for the most extreme hyperbolic shock-waves. Importance of multiquantum transitions.
- Computation time issues remain determinant as they prevent full-use of line-by-line calculations and state-to-state models. The errors induced by the used approximations (Boltzmann equilibrium, band models) remain unknown.
Perspectives

- V–T dissociation models should include effects of molecular rotation.
- V–E processes need more theoretical developments. Only available experimental data obtained for gas-discharge applications with \(T_{tr} \sim 300 \text{K} \).
- Radiation re-absorption may be important for hyperbolic flows (see Park 2004 for Galileo probe entry simulations).
Perspectives

- V–T dissociation models should include effects of molecular rotation.
- V–E processes need more theoretical developments. Only available experimental data obtained for gas-discharge applications with $T_{tr} \sim 300$K.
- Radiation re-absorption may be important for hyperbolic flows (see Park 2004 for Galileo probe entry simulations).
V–T dissociation models should include effects of molecular rotation

V–E processes need more theoretical developments. Only available experimental data obtained for gas-discharge applications with $T_{tr} \sim 300\text{K}$

Radiation re-absorption may be important for hyperbolic flows (see Park 2004 for Galileo probe entry simulations)