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The non-equilibrium structural and dynamical properties of semiflexible polymers confined to two
dimensions are investigated by molecular dynamics simulations. Three different scenarios are con-
sidered: the force-extension relation of tethered polymers, the relaxation of an initially stretched
semiflexible polymer, and semiflexible polymers under shear flow. We find quantitative agreement
with theoretical predictions for the force-extension relation and the time dependence of the entrop-
ically contracting polymer. The semiflexible polymers under shear flow exhibit significant confor-
mational changes at large shear rates, where less stiff polymers are extended by the flow, whereas
rather stiff polymers are contracted. In addition, the polymers are aligned by the flow, thereby the
two-dimensional semiflexible polymers behave similarly to flexible polymers in three dimensions.
The tumbling times display a power-law dependence at high shear rate rates with an exponent com-
parable to the one of flexible polymers in three-dimensional systems. © 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4772748]

I. INTRODUCTION

Semiflexibility is a characteristic property of a broad
range of biological polymers. Prominent examples are DNA,
filamentous actin, microtubules, or viruses such as fd-
viruses.1–5 The rigidity is fundamental for their biological
functions. For example, the DNA persistence length strongly
affects its packing in the genome or inside a virus cap-
sid. Actin filaments are an integral part of the cytoskeleton
and their rigidity determines its particular mechanical prop-
erties. Hence, a considerable effort has been devoted to un-
ravel the mechanical and dynamical properties of semiflexible
polymers.4, 6–18

Advances in single-molecule spectroscopy prompted ex-
perimental and theoretical studies of non-equilibrium proper-
ties of semiflexible polymers.19–26 Fluorescence microscopy
studies on single DNA molecules in shear flow reveal
large conformational changes and an intriguing dynam-
ics, denoted as tumbling motion.23–26 This implies specific
non-equilibrium conformational, dynamical, and rheological
properties, which have been analyzed experimentally,24–30

theoretically,31–49 and by computer simulations.25, 50–71

These studies typically consider semiflexible polymers
in three-dimensional space. Much less attention has been
paid to polymers in two dimensions, although we may ex-
pect to see particular features in their equilibrium and non-
equilibrium dynamical properties. Two-dimensional behavior
is realized for strongly adsorbed polymers at, e.g., a solid
surface, a membrane, or at the interface between immisci-
ble fluids. Experiments reveal a strong dependence of the
diffusive dynamics of adsorbed polymers on the underlay-
ing substrate.72, 73 Moreover, theoretical and simulation stud-
ies predict a strongly correlated dynamics in two-dimensional
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polymer melts.74 Little is known about the non-equilibrium
properties of polymers in two dimensions. Here, we refer to
recent simulation studies of end-tethered semiflexible poly-
mers, where the central monomer is periodically excited.75, 76

These simulations find a crossover from a limit cycle to an
aperiodic dynamics with increasing stiffness.

There are two major differences to three-dimensional
systems. First of all, excluded volume interactions play a
more pronounced role. The non-crossability leads, e.g., to
a segregation of polymers in two dimensions.74 We expect
a strong impact of these interactions on non-equilibrium
properties too. Second, hydrodynamic interactions can be
neglected under certain circumstances.77 This applies to
strongly adsorbed polymers, where the polymer-substrate in-
teraction dominates the dynamics of the polymer. It is cer-
tainly not appropriate for polymers confined at fluid-fluid
interfaces.

In this article, we investigate the non-equilibrium struc-
tural and dynamical properties of semiflexible polymers by
computer simulations. As discussed above, we assume that
the local polymer friction is determined by its interaction with
the substrate and, hence, neglect hydrodynamics. Thus, we
exploit the Brownian multiparticle collision (B-MPC) dynam-
ics approach described in Refs. 78–80. By varying the chain
stiffness, we gain insight into the dependence of the polymer
properties on stiffness. Moreover, by comparison with exis-
tent results on three-dimensional systems, we uncover specific
effects of the reduced dimensionality.

Three different situations are considered. We briefly
touch the force-extension relation of a semiflexible polymer
and show that it is well described by theory.3, 14 In addi-
tion, we examine the end-to-end vector relaxation behavior
of initially stretched polymers. We find excellent agreement
with the power-law dependence obtained in experiments.77

This suggests that our model is a useful coarse-grained
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representation of a DNA molecule, at least for the consid-
ered properties. The major focus of the paper is on the non-
equilibrium properties of semiflexible polymers under shear
flow. We discuss a broad range of structural and dynamical
quantities and stress the universal character and/or their par-
ticular, two-dimensional features.

The paper is organized as follows. In Sec. II, the poly-
mer model is described and the simulation method is intro-
duced. In Sec. III, the force-extension relation of a tethered
polymer in a uniform external field is discussed. Section IV
presents results on the time dependent relaxation behavior
of a stretched semiflexible polymer. The structural properties
of free polymers under shear flow are discussed in Sec. V,
and their tumbling dynamics is analyzed in Sec. VI. Finally,
Sec. VII summarizes our findings.

II. MODEL AND METHOD

The polymer is modeled as a linear chain composed of N
beads of mass M. Its intramolecular interactions are described
by the potential U = Ubond + Ubend + Uex. Successive beads
are linked by the harmonic bond potential

Ubond = κh

2

N−1∑
i=1

(|r i+1 − r i | − r0)2, (1)

where r i is the position vector of bead i (i = 1, . . . , N), κh is
the spring constant, and r0 the bond length. The bond bending
potential

Ubend = κ

N−2∑
i=1

(1 − cos ϕi) (2)

accounts for the bending stiffness of the polymer, with κ the
bending rigidity and ϕi the angle between two consecutive
bond vectors. In the semiflexible limit κ → ∞, the bending
stiffness is related to the persistence length by Lp = 2κr0/kBT,
where kBT is the thermal energy, with T the temperature and
kB Boltzmann’s constant. Excluded-volume interactions are
ensured by the shifted and truncated Lennard-Jones potential

Uex = 4ε
[(σ

r

)12
−

(σ

r

)6
+ 1

4

]
�(21/6σ − r), (3)

where r denotes the distance between two non-bonded beads
and �(r) is the Heaviside function (�(r) = 0 for r < 0 and
�(r) = 1 for r ≥ 0). The dynamics of the beads is described
by Newton’s equations of motion, which we integrated by the
velocity-Verlet algorithm with time step �tp.81, 82

The polymer is coupled to a Brownian heat bath, which
we implement via the B-MPC approach.78, 79, 83 Hence, no hy-
drodynamic interactions are taken into account. In B-MPC,
a bead performs stochastic collisions with a phantom parti-
cle, which mimics a fluid element of a certain size. The mo-
mentum of the phantom particle is taken from a Maxwell-
Boltzmann distribution of variance MkBT and mean given by
the average momentum of the fluid field, which is zero at rest
or (Mγ̇yi, 0)T in the case of an imposed shear flow of shear
rate γ̇ in the xy−plane. For the stochastic process itself, we
apply the stochastic rotation dynamics realization of the MPC
method.79, 84, 85 Here, the relative velocity of a polymer bead,

with respect to the center-of-mass velocity of the bead and the
associated phantom particle, is rotated in the xy−plane by an-
gles ±α. The time interval between collisional interactions is
�t, which is larger than the time step �tp.

The simulations are performed for the parameters
α = 130◦, �t = 0.1tu, where the time unit is tu =√

mr2
0 /(kBT ),

M = 5m, κhr
2
0 /(kBT ) = 4 × 103, ε/(kBT) = 1, σ = r0, N = 51

so that polymer length is L = 50r0, and �tp = 10−2�t. With
this choice for κh, the length of the polymer is kept constant
within 1% for all systems.

III. POLYMER FORCE-EXTENSION RELATION
IN UNIFORM FIELD

We consider a single tethered polymer with its endpoint
r1 fixed at r1 = 0 without additional restrictions on the ori-
entation of the first bond. Every monomer is subjected to the
external force F along the x-direction of the Cartesian refer-
ence frame, e.g., due to an external electric field Ex, where the
force is F = qEx, with q the electric charge of the monomer.
As is well known, the polymer is stretched along the force
direction, where the extension increases non-linearly with
increasing force.86, 87 Theoretical calculations based on the
Kratky-Porod88 wormlike chain model predict the asymptotic
dependence

xN

L
= 1 −

(
kBT

2LpF (N − 1)

)1/2

(4)

for |xN| → L.
Simulation results are presented in Fig. 1 for the persis-

tence lengths Lp/L = 2, 4. They agree very well with the the-
oretical prediction (4). This confirms that the model repre-
sents a continuous semiflexible polymer over the presented
range of forces. Due to the discrete nature of the model,
deviations will appear from the predictions of continuous
semiflexible polymers3, 14, 87, 89 for large forces, as shown in
Refs. 86, 90, and 91, and a crossover will occur from the
force-extension relation of a semiflexible model to that of a
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FIG. 1. Polymer extension along the direction of the external force for the
persistence lengths Lp/L = 2(◦), 4(•) as a function of the dimensionless
force Fd = LpF(N − 1)/(kBT). The full line represents Eq. (4) and has the
slope −1/2.
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FIG. 2. Relaxation of the end-to-end distance along the stretching direction
|xN(t/tu) − xN(0)| of a semiflexible polymer with Lp/L = 2. The line indicates
a fit in the time range t/tu = 103−50 × 103 and has the slope 0.45.

freely jointed chain. The effects of attractive interactions be-
tween non-consecutive nearest neighbor beads91 on the de-
scribed picture might be interesting to be investigated in the
future.

IV. RELAXATION OF STRETCHED POLYMER

Releasing the force on a stretched polymer leads to its
collapse into an equilibrium conformational state. This relax-
ation exhibits a characteristic time dependence. Figure 2 dis-
plays the relaxation behavior of the x-component of the end-
to-end vector of a stretched semiflexible polymer. The initial
average stretching along the x−direction is xN(0)/L = 0.945,
induced by the force FLp(N − 1)/(kBT) = 200. We observe
a power-law decrease of the extension according to |xN(t)
− xN(0)|/L ∼ tγ over a broad time scale. A fit of the data,
which are averages over 20 independent realizations, yields
the exponent γ = 0.45 ± 0.03. This value is in remark-
able agreement with the exponent 0.46 ± 0.08 found in two-
dimensional experiments.77

V. SEMIFLEXIBLE POLYMER UNDER SHEAR FLOW

In our study of semiflexible polymers under shear flow in
two-dimensional space, we consider the persistence lengths
Lp/L = 0.1, 0.4, 2, 10. The corresponding equilibrium end-
to-end vector relaxation times are τ 0/tu � (161, 370, 676, and
707) × 103, respectively. The strength of the flow is charac-
terized by the Weissenberg number Wi = γ̇ τ0 in the range
1 ≤ Wi ≤ 800.

A. Conformational properties

1. End-to-end vector

Probability distribution functions (PDFs) of the polymer
end-to-end distance Re = |rN − r1| are presented in Fig. 3
for the Weissenberg numbers Wi = 8, 80, 800 and the vari-
ous persistence lengths. As shown in Fig. 3(a), for small per-
sistence lengths, the polymers are able to assume coil-like
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FIG. 3. Probability distributions of the polymer end-to-end distance
Re = |rN − r1| for the Weissenberg numbers Wi = 8(◦), 80(•), and 800(�)
and Lp/L = 0.1(a), 0.4(b), 2(c), 10(d).

conformations, which give nearly constant PDFs over a wide
range of end-to-end distances. Very small distances are sup-
pressed by excluded-volume interactions and large distances
are rarely sampled due to entropic penalties. However, larger
shear rates lead to a sampling of large Re values. At low
shear rates, an increasing persistence length naturally leads
to a preference of large Re values. Shear, however, leads to
an opposite behavior. At a given Lp/L, an increasing shear
rate gives rise to an increase in the probability distribution at
smaller end-to-end distances. The effect becomes more pro-
nounced for larger stiffnesses (cf. Figs. 3(c) and 3(d)). This is
in agreement with the predictions of Ref. 49 that semiflexible
polymers under shear flow behave more and more like flexible
polymers with increasing Weissenberg number.

Figure 4 displays the mean end-to-end distances as func-
tion of Wi. For every shear rate, 〈Re〉 is smaller for the more
flexible polymer. However, 〈Re〉 increases for flexible poly-
mers, whereas it decreases for the stiffer ones. As predicted
by theory,49 we expect that the end-to-end distances become
similar for all stiffnesses in the asymptotic limit Wi → ∞.
As the figure clearly reveals, in the stationary non-equilibrium
state, a semiflexible polymer is never fully stretched. This has
also been observed in simulations of flexible polymers69, 70

and in experiments on DNA molecules.25, 28

Mean square end-to-end distances 〈R2
ex〉 along the flow

direction are displayed in Fig. 5. They also show that semi-
flexible polymers are never fully stretched. Moreover, the var-
ious curves reveal a very weak persistence length dependence
for polymers with Lp/L � 0.4. They closely follow the same
Weissenberg number dependence. This has been predicted in
Ref. 49 and is related to the fact that the rather stiff polymers
become first aligned with the flow at moderate shear rates.
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FIG. 4. Mean values 〈Re〉 of the end-to-end distance as a func-
tion of the Weissenberg number for the persistence lengths Lp/L

= 0.1(◦), 0.4(•), 2(�), and 10(�).

Only at larger shear rates, deformation sets in. This is also
evident from Fig. 4, which clearly exhibits a dependence of
the “critical” Weissenberg number on the persistence length,
above which 〈Re〉 decreases with increasing shear rate. Below
the critical value, the polymers are aligned by the flow and
above, in addition, they are deformed.49

In Fig. 6, mean square end-to-end distances 〈R2
ey〉 are

shown along the gradient direction. The polymers of the
various stiffnesses shrink transverse to the flow direction.
Thereby, we observe a slight dependence on persistence
length over the considered range. The decay at larger Wi

can approximately be described by the power-law 〈R2
ey〉

∼ Wi−ν , with ν ≈ 1/2. This dependence is consistent with the
decay of the radius-of-gyration tensor of three-dimensional
systems.28, 52, 69 However, theoretically an exponent ν = 2/3
is expected,17, 49 which seems to be reached for much
higher Weissenberg numbers in Ref. 25. Hence, the exponent
ν = 1/2 could characterize a crossover behavior only.
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FIG. 5. Mean square end-to-end distances along the flow direction as
function of the Weissenberg number for the persistence lengths Lp/L

= 0.1(◦), 0.4(•), 2(�), and 10(�). 〈R2
e,0〉 is the mean square end-to-end dis-

tance at equilibrium.
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FIG. 6. Mean square end-to-end distances along the gradient direction as
a function of the Weissenberg number for the persistence lengths Lp/L

= 0.1(◦), 0.4(•), 2(�), and 10(�). The full line has the slope −1/2. 〈R2
e,0〉

is the mean square end-to-end distance at equilibrium.

2. Bond angle

To further characterize the polymer conformational prop-
erties, we present in Fig. 7 the average bond angles 〈ϕi〉 (2)
between successive bond vectors along the semiflexible poly-
mers. As expected, the angles 〈ϕi〉 decrease with increasing
persistence length, and are close to zero for Lp/L = 10. At
small persistence lengths, the values of 〈ϕi〉 decrease with
increasing shear rate, specifically toward the middle of the
chain, due to polymer stretching by the flow. The situation
is reverted at large persistence lengths, where the angles 〈ϕi〉
increase with the shear rate.
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FIG. 7. Average local bond angle 〈ϕi〉 along the polymer contour for the
Weissenberg numbers Wi = 8(◦), 80, (•), and 800(�) and the persistence
lengths Lp/L = 0.1(a), 0.4(b), 2(c), and 10(d).
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FIG. 8. Average bond angles 〈ϕ〉 (5) as function of the Weissenberg number
for the persistence lengths Lp/L = 0.1(◦), 0.4(•), 2(�), and 10(�).

Average bond angles

〈ϕ〉 = 1

N − 2

N−2∑
i=1

〈ϕi〉 (5)

are displayed in Fig. 8 as a function of Weissenberg number
and for various persistence lengths. Evidently, the mean val-
ues are independent of shear rate for the larger persistence
lengths. Only for the considered most flexible polymer, a de-
crease of 〈ϕ〉 is found as already expected from Fig. 7.

This minor change in the bond-bond orientational behav-
ior is surprising in the light of the decreasing mean end-to-end
distance (cf. Fig. 4). This is explained on the one hand by the
nearly rigid rod-like rotation of the semiflexible polymers at
lower Weissenberg numbers and on the other hand by the for-
mation of U-shaped conformations with only small and local
bending of the polymer, as reflected in Figs. 7(c) and 7(d) at
higher values of Wi. Typical conformations of stiff polymers
at low and high Weissenberg numbers are presented in Fig. 9.

B. Alignment

Polymers under flow are not only deformed, but also ex-
hibit a preferred, flow induced orientation.25, 28, 49, 64, 69, 70 To
characterize the degree of alignment, we calculate the proba-
bility distribution of the angle φ between the end-to-end vec-
tor and the flow direction. Examples are shown in Fig. 10
for various Weissenberg numbers and persistence lengths.
There is no preferred angle at equilibrium. With increasing
shear rate, the distribution function exhibits a maximum at a
non-zero, positive value φm. This maximum shifts to smaller
values with increasing shear rate. At the same time, the dis-
tribution function becomes narrower. The latter implies that
a polymer aligns preferentially in a particular direction and
samples other angles only rarely.

Interestingly, the probability distribution functions be-
come asymmetric with increasing shear rate and exhibit a sec-
ond maximum at large angles. Thereby, the second maximum
moves to larger angles with increasing stiffness. The strong
asymmetry, particular for lower Weissenberg numbers, seems

FIG. 9. Typical conformations at consecutive times (from top to bottom) of
a semiflexible polymer (Lp/L = 10) at Wi = 8 (left panel) and Wi = 800
(right panel). See also the movies at Weissenberg number Wi = 8 and Wi

= 800 (enhanced online) [URL: http://dx.doi.org/10.1063/1.4772748.1]
[URL: http://dx.doi.org/10.1063/1.4772748.2].
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FIG. 10. Probability distributions of the angle φ for the Weissenberg
numbers Wi = 8(◦), 80(•), and 800(�) and the persistence lengths Lp/L
= 0.1(a), 0.4(b), 2(c), and 10(d).
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FIG. 11. Probability distributions of the angle φ for the Weissenberg
numbers Wi = 8 (a) and 80 (b) and the persistence lengths Lp/L

= 0.1(◦), 0.4(•), 2(�), and 10(�).

to be specific for two-dimensional systems, because (flexi-
ble) polymers in three dimensions70 exhibit more symmet-
ric distributions. The second peak is peculiar for rather stiff
polymers. However, it is not clear whether it appears in two-
dimensional systems only. Here, studies of three-dimensional
semiflexible polymers are required to resolve the issue. We
report for completeness the fact that the appearance of two
peaks in P(φ) at finite values, symmetric with respect to
φ = 0, was observed for two-dimensional grafted polymers
with the first bond fixed along the x-direction and Lp � L un-
der equilibrium conditions.92

As shown in Fig. 11, the probability distribution func-
tions depend only weakly on the persistence length for Weis-
senberg numbers Wi � 102. In particular, the position of the
maximum is virtually independent of Lp.

Figure 12 displays the angles φm of the central max-
imum of P(φ). For small Weissenberg numbers Wi < 10,
tan (2φm) decreases as Wi−1, whereas for larger Weissenberg
numbers the dependence tan(2φm) ∼ Wi−1/3 is obtained. A
similar dependence is found for flexible polymers in three
dimensions,70 and is predicted theoretically17, 49 indepen-
dent of dimension. As already suggested by Fig. 11, nearly
the same degree of alignment is obtained independent of
stiffnesses. However, the values of tan (2φm) are somewhat
smaller for the more flexible polymers in the range Wi > 10,
as predicted theoretically.49

Similarly, the width �φ, which is defined as the full
width at half maximum of the distribution function P(φ), de-
creases as �φ ∼ Wi−1/3 at high shear rates. This has also
been observed in experiments26 and predicted theoretically.17

VI. TUMBLING DYNAMICS

As mentioned in the Introduction, polymers in shear flow
undergo a tumbling motion. A characteristic tumbling time
can be obtained from the distribution function P(t) of times
between successive zeros of the end-to-end vector compo-
nent Rex(t) along the flow direction. This distribution exhibits
the exponential decay P(t) ∼ exp (−t/τφ) at large times, from
which the tumbling time τφ is extracted. Normalized tum-
bling frequencies ∼1/τφ are depicted in Fig. 13, where the
full line has slope 2/3.
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FIG. 12. (a) Angles φm of the maximum and (b) width �φ of the distribu-
tion function P(φ) as function of the Weissenberg number for the persistence
lengths Lp/L = 0.1(◦), 0.4(•), 2(�), and 10(�). The slopes of the full lines
are −1 and −1/3, respectively.

As for a three-dimensional system, we obtain
τφ ∼ Wi−2/3 for the shear rate dependence of the tumbling
times. This confirms that the tumbling times of semiflexible
polymers exhibit the same asymptotic Weissenberg number
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FIG. 13. Normalized tumbling frequencies τ 0/τφ as function of the Weis-
senberg number for the persistence lengths Lp/L = 0.1(◦), 0.4(•), 2(�),
and 10(�). The line has the slope 2/3.
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dependence as flexible polymers. Moreover, two-dimensional
tumbling behavior seems to be similar to three-dimensional
one for semiflexible polymers.

Interestingly, the frequencies for the larger persistence
lengths seem to exhibit a fast, rather abrupt increase in the
vicinity of Wi ≈ 10 and approach the dependence Wi2/3 for
large Weissenberg numbers only. Such a dependence has not
been observed in three dimensions so far, nor be predicted the-
oretically. Whether this is a specific two-dimensional feature
needs to be addressed by simulations of semiflexible poly-
mers in three dimensions.

VII. CONCLUSIONS

We have presented results for the non-equilibrium struc-
tural and dynamical properties of semiflexible polymers con-
fined to two dimensions. The analysis of the force-extension
relation of a semiflexible polymer in a uniform external field
yields excellent agreement with theoretical predictions,86, 87

and confirms that the applied model is very well suited to de-
scribe semiflexible polymers. Our studies of the end-to-end
distance relaxation behavior of initially stretched semiflexi-
ble polymers confirm the experimentally obtained power-law
time dependence tγ with the exponent γ = 0.45, which is
in close agreement with the scaling prediction γ = 1/2 of
Ref. 77.

We have also studied the conformation properties of
semiflexible polymers under shear flow. We clearly find
strong shear-induced conformational changes. Beyond a stiff-
ness dependent Weissenberg number, the average polymer ex-
tension decreases with increasing shear rate, in contrast to
flexible polymers, where the extension increases. Visual in-
spection shows that U-shaped conformations appear. Such
conformations have also been observed for semiflexible poly-
mers in microchannel flows, both experimentally93 and in
simulations.94, 95 This confirms that the end-to-end distances
become similar in the asymptotic limit of infinite shear rate
independent of the stiffness.49 As for flexible polymers in
three dimensions, the semiflexible polymers preferentially
align along the flow direction. However, the distribution func-
tions of the end-to-end vector alignment angle are clearly
more asymmetric at low Weissenberg numbers than for flex-
ible polymers and exhibit a second peak for large stiffnesses.
It is not evident whether these effects are caused by stiffness
or confinement to two dimensions. Further simulation studies
are necessary to resolve this question.

We have also shown that semiflexible polymers ex-
hibit a tumbling motion, where the tumbling times approx-
imately show the dependence τφ ∼ Wi−2/3 on shear rate.
Hence, semiflexible polymers reveal in essence the same tum-
bling behavior as flexible polymers25, 28, 47, 49, 68, 70, 71, 96 and
rods.48, 49

There are various aspects, e.g., the appearance of a sec-
ond peak in the orientational distribution functions and their
asymmetry at low shear rates, which need further investi-
gations to clarify the underlaying mechanism. This requires
theoretical calculations and/or simulations in two and three
dimensions. We hope that our results will stimulate such theo-

retical studies as well as experimental investigations, and will
be valuable in the respective endeavors.
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