Air – Water Microwave

C. M. Ferreira, E. Tatarova, J. Henriques, F. M. Dias
Instituto de Plasmas e Fusão Nuclear,
Instituto Superior Técnico, Lisbon, Portugal

B. Gordiets
Lebedev Institute of Physics, Moscow, Russia
Motivation
Plasma interaction with living matter ⇒ on the cutting edge of low-temperature plasma research

Microwave discharges driven by surface waves
Properties and advantages as sources of reactive species

Theoretical model of an air-water microwave plasma source (discharge & afterglow)

NO(X) flux in the afterglow plasma jet
Motivation

Plasma Medicine

Surface

Plasma Therapy

Biological
Motivation

Plasma Medicine

Surface

Plasma Therapy

Biological

Plasma <-> Living Matter
Plasmas can initiate, promote, control and catalyze complex biochemical processes in living matter.

Plasma biomedical applications need reliable and user-friendly plasma sources.
NO - Therapy
Nobel Prize in medicine and biology awarded in 1998 to R. F. Furchgott, L. J. Ignarro, and F. Murad for their work on the function of NO as a signal molecule
Nobel Prize in medicine and biology awarded in 1998 to R. F. Furchgott, L. J. Ignarro, and F. Murad for their work on the function of NO as a signal molecule

NO effects on wound healing and inflammatory processes
Nobel Prize in medicine and biology awarded in 1998 to R. F. Furchgott, L. J. Ignarro, and F. Murad for their work on the function of NO as a signal molecule

- NO effects on wound healing and inflammatory processes
- Treatment of wound pathologies
Nobel Prize in medicine and biology awarded in 1998 to R. F. Furchgott, L. J. Ignarro, and F. Murad for their work on the function of NO as a signal molecule.

- NO effects on wound healing and inflammatory processes
- Treatment of wound pathologies
- Treatment of inflammatory and destructive illnesses:
Nobel Prize in medicine and biology awarded in 1998 to R. F. Furchgott, L. J. Ignarro, and F. Murad for their work on the function of NO as a signal molecule

- NO effects on wound healing and inflammatory processes
- Treatment of wound pathologies
- Treatment of inflammatory and destructive illnesses:
 - pulmonology, phthisiology, traumatology and orthopedics, dentistry, gynecology, maxillofacial surgery, ophthalmology, dermatology, otorhinolaryngology, gastroenterology, etc.
Surface Wave Driven Plasma Source

Wave – to – plasma power transfer ⇒ physical basis of discharges sustained by surface waves

$f = 2.45$ GHz

Advantages:
⇒ compact, economical
⇒ electrodeless
⇒ large power density
⇒ high concentration of active species
⇒ follow the geometry of the guiding surface
Air – Water Plasma Source

\(f = 2.45 \, \text{GHz} \)

\[\text{p} = 1 \, \text{bar} \]

\[\text{[Air (98\%) - H}_2\text{O (2\%)]} \]

\[\text{P} = 200 - 600 \, \text{W} \]

\[\text{Q} = 500 – 2000 \, \text{scm} \]

E. Tatarova, F. M. Dias, E. Felizardo, J. Henriques, C. M. Ferreira and B. Gordiets,
1D Self-consistent Model of the Air – Water Plasma Torch

✓ Maxwell’s equations;
✓ Dispersion equation for TM surface mode;
✓ Continuity equations for vibrationally excited states of ground state $N_2(X)$ molecules;
✓ Continuity equations for excited states of molecules and atoms [$N_2(A), N_2(B), N_2(C), N_2(a’), N^{(2D)}, N^{(2P)}, O_2(a), O_2(b), O^{(1D)}, O^{(1S)}$];
✓ Continuity equations for ions and electrons [$N_2^+, N_4^+, O^+, O_2^+, O_4^+, NO^+, NO_2^+, H_2O^+, H_3O^+, H_2^+, H_3^+, HN_2^+, NH_3^+, NH_4^+, O^-, O_2^-, O_3^-, H^-, OH^-, NO_2^-, NO_3^-]$;
✓ Continuity equations for ground state molecules and atoms [$N, O, O_3, NO, N_2O, NO_2, NO_3, N_2O_5, H_2O, H, H_2, OH, HO_2, H_2O_2, NH_3, NH_2, NH, HNO, HNO_2, HNO_3$];
✓ Gas thermal balance equation;
✓ Equation of mass conservation for the fluid as a whole.

E. Tatarova, F. M. Dias, E. Felizardo, J. Henriques, M. Pinheiro, C. M. Ferreira and B. Gordiets,

Air –Water Plasma Source

Gas Temperature Axial Variation

- $Q = 500$ sccm
- $\text{H}_2\text{O} = 2\%$

- $\text{H}_2\text{O} (2\%)$
- $P = 300$ W

- 2000 sccm
- 1000 sccm
- 500 sccm
Air – Water Plasma Source

\[\text{NO}(X) \text{ axial variation} \]
[NO] vs. microwave power
$[O(^3P)]$ vs. microwave power
NO(X) generation

[NO] vs. total gas flow

Main Source Channels

N + O₂ → O + NO
O + N₂ → N + NO

Main Loss Channels

NO + O → O₂ + N
NO + N → N₂ + O

τ_{NO} > τ_R
Conclusions

♦ Surface wave driven plasma torch is a promising plasma source for biomedical applications;

♦ High population density of NO(X) in the afterglow plasma jet (up to 15 000 ppm) can be achieved;

♦ High population density of ground state atoms O(3P) can be reached in the discharge zone.
Thanks for your attention!